This article was downloaded by: [University of Pireaus] On: 30 September 2014, At: 05:42 Publisher: Routledge Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Applied Economics Letters

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/rael20</u>

Did financial crisis alter the level of competition in the EMU banks?

Michael L. Polemis^{ab}

^a Department of Economics, University of Piraeus, Piraeus, Greece

^b Hellenic Competition Commission, Athens, Greece

Published online: 24 Apr 2014.

To cite this article: Michael L. Polemis (2014) Did financial crisis alter the level of competition in the EMU banks?, Applied Economics Letters, 21:15, 1065-1069, DOI: <u>10.1080/13504851.2014.909564</u>

To link to this article: <u>http://dx.doi.org/10.1080/13504851.2014.909564</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Did financial crisis alter the level of competition in the EMU banks?

Michael L. Polemis^{a,b}

^aDepartment of Economics, University of Piraeus, Piraeus, Greece ^bHellenic Competition Commission, Athens, Greece E-mail: mpolemis@epant.gr

The goal of this article is to empirically assess the level of competition in the European Monetary Union (EMU) banking sector. The empirical findings provide sufficient evidence in favour of a monopolistic competition regime. The industry structure of the banking sector seems to have been left unaltered after the adoption of the euro currency and the recent financial crisis with the estimated values of the *H*-statistic range between zero and unity.

Keywords: banking; monopolistic competition; panel data; financial crisis

JEL Classification: G21; C23; L10

I. Introduction

The ongoing financial crisis poses many challenges but also provides an opportunity to enhance efforts for constructive banking consolidation. Many government officials are keen on restructuring and reshaping of the banking industry at a pan European level targeted at the increase of its competitiveness. However, the role of competition in financial sector is a controversial issue. On the one hand, it is argued that fierce competition may foster banks to undertake risk increasing the likelihood of a bailout, while on the other hand, a more liberalized banking industry may enhance social welfare (Tabacco, 2013).

There is a plethora of studies assessing the level of competition in the banking industry by employing nonstructural measures such as the Lerner index, the H-statistic or the Boone indicator.¹ However, none of these studies have investigated the impact of financial crisis on the level of banking competition. This is of striking importance since many European Monetary Union (EMU) countries have already launched structural reforms directed towards their business environment while at the same time supporting their financial sector to mitigate the crisis (Mamatzakis *et al.*, 2013).

The goal of this article is to conduct an empirical analysis of the competitive conditions in the EMU banking system in the light of the recent financial crisis. The analysis employs a widely used methodology put forward by Panzar and Rosse (1987) and draws upon a comprehensive panel data set of EMU banks spanning the period 1996 to 2011.² This method is a valuable tool for assessing market conditions, mainly owing to its simplicity and transparency, without lacking efficiency (Delis, 2010).

The contribution of this article is twofold. First, by applying an array of panel data econometric techniques, it attempts to assess the level of competition in the EMU. Second, and most importantly, it tries to fill the gap in the banking literature by providing evidence on the evolution of banking competition in EMU during the present financial crisis, an issue not adequately covered by previous studies.

¹ For an extensive review, see Andrieş and Căpraru (2013).

² The *H*-statistic is smaller than 0 for a neo-classical monopolist or collusive oligopolist, it ranges between 0 and 1 for a monopolistic competitor and is equal to unity for a competitive price-taking firm. However, negative values of *H*-statistic may indicate competitive behaviour (Bikker *et al.*, 2012).

Table 1. Empirical results

	[1996–2011]	[1996–2000]	[2001–2007]	[2008–2011]	[1996–2011]	[1996–2000]	[2001 - 2007]	[2008–2011]
Variables	ln(II)	ln(II)	ln(II)	ln(II)	ln(TI)	ln(TI)	ln(TI)	ln(TI)
OLS httercept $h(X_1)$ $h(X_2)$ $h(X_3)$ $h(Y_1)$ $h(Y_1)$ $h(Y_2)$ $h(Y_2)$ $h(Y_2)$ $h(Y_2)$ $h(Y_2)$ $h(Y_1)$ $h(Y_2)$ $h(Y_1) = 0$ $Malt test \{H_0 = 1\}$ $Malt test \{H_0 = 1\}$	$\begin{array}{c} 11.413*(8.16)\\ 0.428*(2.74)\\ 1.137***(1.57)\\ -0.997***(-1.43)\\ -0.997***(-1.43)\\ -2.895*(-10.17)\\ 1.848*(4.81)\\ -0.004(-0.21)\\ 0.57\\ 254\\ 0.39\\ 3.65**[0.06]\\ 2.10\ [0.15]\\ \end{array}$	18.306* (6.08) 1.438* (2.38) -3.048* (-3.05) 2.309* (2.31) 2.309* (2.31) -2.674* (-5.14) 2.340* (3.68) -0.014 (-0.43) 0.70 84 0.43 0.43 0.43 0.43 2.86*** [0.09]	$\begin{array}{c} 13.407 * (6.52) \\ -0.675 * (-3.81) \\ 1.704 * * (1.61) \\ -0.184 & (-1.20) \\ -2.972 * (-7.63) \\ 0.796 * * (1.52) \\ 0.012 & (-0.42) \\ 0.012 & (-0.42) \\ 0.84 \\ 117 \\ 117 \\ 0.46 \\ 6.58 * [0.00] \\ 0.17 & [0.67] \end{array}$	$\begin{array}{c} 17.492^* (5.39) \\ -0.735^{**} (-1.95) \\ 0.647 (0.43) \\ 0.647 (0.43) \\ 0.486^{***} (1.53) \\ -3.560^* (-7.90) \\ 0.641 (0.74) \\ 0.641 (0.74) \\ -0.024 (-0.77) \\ 0.67 \\ 0.67 \\ 11.33^* [0.00] \\ 4.24^{**} [0.04] \end{array}$	$ \begin{array}{c} 10.201 * (8.95) \\ 0.343 * (2.45) \\ 0.343 * (2.45) \\ 1.911 * (3.50) \\ -1.937 * (-3.39) \\ -2.691 * (-10.51) \\ -0.076 (-0.23) \\ 0.031 * * * (1.67) \\ 0.031 * * * (1.67) \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.44 \\ 1.60 \\ 0.26 \\ 7.48 * \\ 0.00 \\ \end{array} $	13.759* (5.45) 0.507* (2.97) 1.993* (2.38) -1.615** (-1.93) -2.868* (-6.57) 0.020 (0.75) 0.288 (-6.57) 0.020 (0.75) 0.288 (-6.57) 0.200 (0.75) 0.288 (-6.57) 0.201 (0.75) 0.211 (0.00] 2.29 [0.13]	11.963* (6.77) 0.508* (3.34) 2.693* (2.97) -2.375* (-2.81) -2.846* (-8.50) -0.846* (-8.50) 0.019 (0.76) 0.83 117 0.54 0.54 0.54 0.19 [0.66]	20.025* (9.48) -0.763* (-2.22) -0.255 (-0.26) 1.993 (1.43) -3.136* (-7.60) -1.113*** (-1.59) 0.008 (0.30) 0.97 54 0.71 27.82* [0.00] 12.41* [0.00]
PGLS_FE Intercept $\ln(X_1)$ $\ln(X_2)$ $\ln(X_3)$ $\ln(Y_1)$ $\ln(Y_2)$ $\ln(Y_3)$	2.542* (15.01) 0.543* (33.25) 0.225*(2.97) 0.119***(1.58) -0.052*(-2.46) 0.172*(4.84) 0.974*(134.09) 0.89 254 0.99 531.61* [0.00] 8.69* [0.00]	1.243* (4.04) 0.651*(22.54) 0.067(0.58) 0.048(0.38) -0.168**(-2.91) 0.216*(67.13) 0.77 84 0.99 197.69* [0.00] 18.61* [0.00]	1.881*(7.93) 0.483*(21.96) 0.013(0.12) 0.183***(1.86) 0.010(0.26) 0.269*(5.20) 0.969*(110.57) 0.68 117 0.99 201.24* [0.00] 45.088* [0.00]	3.012**(2.27) 0.617*(20.72) 0.200***(1.73) -0.237***(-1.73) 0.090(0.82) 0.915*(11.37) 0.915*(11.37) 0.95 0.99 10.99*[0.00] 5.79**[0.02]	2.732*(15.93) 0.380*(20.21) 0.147*(2.36) 0.180*(2.50) -0.001(-0.05) 0.059(1.34) 0.969*(143.69) 0.71 255 0.99 425.79* [0.00] 72.92* [0.00]	1.977*(6.71) 0.456*(17.07) 0.081 (0.70) 0.144 (1.21) -0.106 (-1.38) 0.182*(2.99) 0.983*(67.03) 0.68 84 0.99 154.50* [0.00] 33.76* [0.00]	$\begin{array}{c} 1.869^* (8.05)\\ 0.286^* (11.99)\\ -0.124 (-1.20)\\ 0.365^* (3.57)\\ -0.007 (-0.22)\\ 0.256^* (3.86)\\ 0.976^* (108.34)\\ 0.976^* (108.34)\\ 0.976^* (108.34)\\ 0.99\\ 117\\ 0.99\\ 119.80^* \left[0.00 \right]\\ 96.43^* \left[0.00 \right] \end{array}$	4.937*(7.19) 0.412*(16.40) 0.297*(17.59) -0.197*(-2.58) 0.230*(2.74) -0.063(-0.43) 1.018*(44.67) 0.51 54 0.99 152.08* [0.00] 4.44** [0.04]

7.111* (4.61) 5.24 0.694* (3.84) 0.35 0.539 (0.99) 1.64 -0.440 (-0.68) $-1.76-0.578* (-2.71)$ $-0.55-0.66 (-0.16)$ $-0.050.591* (8.71) 0.660.790$	5.307* (4.05) 0.353* (5.65) 0.836*** (1.51) -0.694 (-1.27) -0.589* (-2.35) 0.387 (1.33) 0.702* (17.01) 0.49 0.73 0.702* (17.01) 0.73 0.73 0.73 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.5	15.331* (8.15) 0.553* (8.46) 0.267 (0.66) -0.497** (-1.99) 0.707 (1.33) 0.707 (1.33) 0.28 0.28 0.28 0.28 0.60 [0.44] 3.89** [0.05] 15.49* [0.01]	3.791*(2.92) 0.520*(8.85) 0.903***(1.60) -0.968***(-1.63) -0.321(-1.37) 0.262(0.73) 0.775*(14.72) 0.45 117 0.85 4.65**[0.03] 6.70*[0.01] 227.95*[0.00]	6.583* (4.06) 0.951* (5.19) 0.276 (0.51) -0.165 (-0.26) -0.643* (-3.00) -0.645 (-0.16) 0.607* (8.53) 1.06 84 0.77 17.84* [0.00] 0.059 [0.80] 133.72* [0.00]	4.426* (3.53) 0.520* (8.27) 0.296 (0.67) -0.114 (-0.23) -0.536** (-2.09) 0.758* (18.28) 0.758* (18.28) 0.75 0.75 1.91 [0.17] 269.18* [0.00] 1.91 [0.17] 269.18* [0.00] 1.91 [0.17] 269.18* [0.00]	PGLS_REIntercept $\ln(X_1)$ $\ln(X_2)$ $\ln(X_2)$ $\ln(X_1)$ $\ln(Y_1)$ $\ln(Y_2)$
tale utachels unition p^- vaturo.	ausur. Ligures medu		iouci. Figures III pareitu		respectively.	5% and 10% levels,
eralized least squares with rar uare brackets denote <i>p</i> -values.	LS_RE = Pooled gen atistic. Figures in sou	th fixed effects, PGI hesis denote the <i>t</i> -st	ralized least squares wi odel. Figures in parent	S_FE = Pooled gene sman test for each m	ary least squares, PGL is iustified after a Haus	<i>Notes</i> : OLS = Ordina effects specification i
152.97* [0.00] 346.04	329.74* [0.00]	15.49* [0.01]	227.95* [0.00]	133.72* [0.00]	269.18* [0.00]	Hausman test
0.68 [0.41] 10.17	5.02^{**} [0.03]	3.89^{**} [0.05]	6.70*[0.01]	$0.059 \ [0.80]$	1.91[0.17]	Wald test $\{H_0 = 1\}$
10.01* [0.00] 1.02	4.79^{**} [0.03]	0.60[0.44]	4.65^{**} [0.03]	17.84^{*} $[0.00]$	10.64^{*} $[0.00]$	Wald test $\{H_0 = 0\}$
0.74 0.79	0.73	0.82	0.85	0.77	0.75	Adjusted R^2
84 117	255	51	117	84	254	Observations
0.79 0.24	0.49	0.28	0.45	1.06	0.70	H-statistic
$0.591^{*}(8.71)$ 0.66	0.702*(17.01)	0.075(1.01)	0.775*(14.72)	0.607*(8.53)	0.758*(18.28)	$\ln(Y_3)$
-0.046(-0.16) -0.05	0.387(1.33)	0.707 (1.33)	0.262(0.73)	-0.046(-0.16)	0.728*(2.57)	$\ln(Y_2)$
-0.578*(-2.71) -0.55	-0.589*(-2.35)	-0.497** (-1.99)	-0.321(-1.37)	$-0.643^{*}(-3.00)$	$-0.536^{**}(-2.09)$	$\ln(Y_1)$
-0.440(-0.68) -1.76	-0.694(-1.27)	-0.539(-1.16)	$-0.968^{***}(-1.63)$	-0.165(-0.26)	-0.114(-0.23)	$\ln(X_3)$
0.539 (0.99) 1.64	$0.836^{***}(1.51)$	0.267(0.66)	$0.903^{***}(1.60)$	0.276(0.51)	0.296(0.67)	$\ln(X_2)$
$0.694^{*}(3.84) 0.35$	0.353*(5.65)	0.553*(8.46)	0.520*(8.85)	0.951*(5.19)	0.520*(8.27)	$\ln(X_1)$
7.111* (4.61) 5.24	5.307*(4.05)	15.331^* (8.15)	$3.791^{*}(2.92)$	6.583* (4.06)	$4.426^{*}(3.53)$	Intercept
						PGLS RE

ixed-	t 1%,		
of the f	icant a		
ie use	Signif		
scts. Tł	:*** p		
om effe	, ** an		
h rande	lues. *		
res wit	te p-va		
ıst squa	ts deno		
ized lea	bracke		
generali	square		
ooled g	ures in		
RE = P	ic. Figi		
GLS	t-statist		
fects, I	ote the		
fixed ei	sis deno		
s with	renthes		
square	es in pa		
ed least	. Figure		
neralize	model		
oled ger	or each		
$\Xi = Poc$	n test fc		
ILS_FI	ausmai		
res, PC	ter a H		
st squa	ified af	ctively.	
ary lea	is just	, respec	
= Ordin	ication	levels,	
OLS =	specif	d 10%	
otes:	fects	% an	

II. Methodology

As shown by Bikker *et al.* (2012), the use of total assets as a proxy for bank size has lead to a biased estimate of the *H*-statistic. For this reason, in contrast to other related studies (De Bandt and Davis, 2000; Claessens and Laeven, 2004; Yildirim and Philippatos, 2007; Andrieş and Căpraru, 2013), we estimate the following unscaled price and revenue equations:

$$\ln(H_{it}) = a + \beta_1 \ln(X_{1,it}) + \beta_2 \ln(X_{2,it}) + \beta_3 \ln(X_{3,it}) + \gamma_1 \ln(Y_{1,it}) + \gamma_2 \ln(Y_{2,it}) + \gamma_3 \ln(Y_{3,it}) + \varepsilon_{it}$$
(1)

$$\ln(TI_{it}) = a + \beta_1 \ln(X_{1,it}) + \beta_2 \ln(X_{2,it}) + \beta_3 \ln(X_{3,it}) + \gamma_1 \ln(Y_{1,it}) + \gamma_2 \ln(Y_{2,it}) + \gamma_3 \ln(Y_{3,it}) + \varepsilon_{it}$$
(2)

where α and ε_{it} are the constant and the error term, respectively.

Our data set is drawn from the Bankscope database. The interpretation of the variables comes as follows. II_{it} is the interest income and TI_{it} is the total income (sum of gross interest revenues plus other operating noninterest revenues). $X_{1,it}$ is the ratio of interest expenses to total deposits and money market funding as a proxy for the average funding rate, $X_{2,it}$, is the ratio of personnel expenses to total assets as an approximation of the wage rate and $X_{3,it}$ is the ratio of other operating and administrative expenses to fixed assets as a proxy for the price of physical capital.

Moreover, $Y_{1,it}$ is the ratio of equity to total, $Y_{2,it}$ is the ratio of net loans to total assets and finally $Y_{3,it}$ represents fixed to total banking assets. The sum of the three elasticities ($H = \beta_1 + \beta_2 + \beta_3$) yields the *H*-statistic.

III. Results and Discussion

Regarding the magnitude of the relevant point elasticities, we infer that the coefficient of the average funding rate $(\ln X_1)$ is positive and statistically significant in nearly all of the specifications (Table 1). This indicates that the higher the interest expenses, relative to deposits and money market funding, paid by banks the more the allocation of revenues. Although the sign and the level of significance for the rest of the input prices ($\ln X_2$ and $\ln X_3$) vary over the distinct sub-samples, in most cases they appear to have a positive and statistically significant impact on price and revenue respectively.

The EMU banking sector can be characterized by the existence of a monopolistic competition regime since the values of the *H*-statistic range between 0 and 1. Regarding

the distinct sub-samples, it is highlighted that the value of the *H*-statistic generated by the PGLS_FE methodology dropped slightly after the formulation of the EMU (from 0.77 to 0.68). However, the OLS method does not confirm the relevant finding (from 0.70 to 0.84). Despite the controversial outcome due to the lack of ordinality in the *H*-statistic, an increase (decrease) in its value does not necessarily imply an increase (decrease) in the level of competition (Bikker *et al.*, 2012). It is worth mentioning that the magnitude of the *H*-statistic is smaller when we use total revenues as a dependent variable (0.53 and 0.83, respectively).

The recent financial crisis and the relevant stabilization policies adopted by the member states and the European Central Bank seem to have left unaltered the level of banking competition as indicated by the *H*-statistic which does not exceed unity. However, the value of the *H*-statistic during the crisis period (2008 to 2011) shows a slight decline but remained below unity with its magnitude estimated to be 0.58 and 0.51 respectively. This decline could be attributed to the process of banking consolidation and the movement of bank activities from traditional financial business to off-balance sheet activities.

IV. Conclusions

Despite the existence of the recent financial crisis, the EMU banking sector is not characterized by the absence of competitive behaviour. It is important to note that, the euro zone countries experienced a slight but significant decline in banking competition after the formulation of the EMU and the recent financial crisis. The State aid provided to the EMU banks during the period of financial instability seems to have left unaltered the industry structure since the *H*-statistic showed a modest decrease but remained below unity. Despite the existence of a monopolistic competition banking environment during the crisis, the EMU countries must focus their policies on fostering competition between banks through improving regulation and supervisory framework.

References

- Andrieş, A. M. and Căpraru, B. (2013) The nexus between competition and efficiency: the European banking industries experience, *International Business Review* (Article in press). doi:10.1016/j.ibusrev.2013.09.004
- Bikker, J. A., Shaffer, S. and Spierdijk, L. (2012) Assessing competition with the Panzar-Rosse model: the role of scale, costs, and equilibrium, *The Review of Economics* and Statistics, 94, 1025–44.
- Claessens, S. and Laeven, L. (2004) What drives bank competition? Some international evidence, *Journal of Money*

Credit and Banking, **36**, 563–83. doi:10.1353/ mcb.2004.0044

- De Bandt, O. and Philip Davis, E. (2000) Competition, contestability and market structure in European banking sectors on the eve of EMU, *Journal of Banking and Finance*, **24**, 1045–66. doi:10.1016/S0378-4266(99)00117-X
- Delis, M. (2010) Competitive conditions in the Central and Eastern European banking systems, *Omega*, 38, 268–74. doi:10.1016/j.omega.2008.09.002
- Mamatzakis, E., Kalyvas, A. N. and Piesse, J. (2013) Does regulation in credit, labour and business matter for Bank performance in the EU-10 economies?, *International*

Journal of the Economics of Business, **20**, 341–85. doi:10.1080/13571516.2013.835981

- Panzar, J. C. and Rosse, J. N. (1987) Testing for 'monopoly' equilibrium, *The Journal of Industrial Economics*, 35, 443– 56. doi:10.2307/2098582
- Tabacco, G. (2013) A new way to assess banking competition, *Economics Letters*, **121**, 167–9. doi:10.1016/j. econlet.2013.07.028
- Yildirim, H. S. and Philippatos, G. C. (2007) Restructuring, consolidation and competition in Latin American banking markets, *Journal of Banking and Finance*, **31**, 629–39. doi:10.1016/j.jbankfin.2006.06.008

1069